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ABSTRACT. To accurately predict the unsaturated hydraulic conductivity (K) from measured soil water retention
data using analytical (nontabular) functions, one needs a reliable descriptive model of the retention curve as well as
an accurate model for K on which the prediction ultimately is based. This paper reviews several empirical expressions
for describing the soil water retention curve. A five-parameter equation was used that exhibits great flexibility in
matching retention data of various soils, has a simple expression for the inverse, and permits the derivation of closed-
form analytical expressions for K when combined with predictive theories previously proposed by either Burdine
or Mualem. The retention function graphically displays a smooth (continuously differentiable) S-shaped curve between
the saturated and residual water contents. Application of the retention model to hundreds of data sets, both for
disturbed (screened) and undisturbed field soils, consistently lead to an excellent description of the observed data.
Of the two predictive hydraulic conductivity models, Mualem’s approach was found to be applicable to a wider
variety of soils than Burdine’s formulation.

Key words : soil water retention curve, soil water characteristic curve, hydraulic conductivity, soil
hydraulic properties, unsaturated flow.
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INTRODUCTION

Application of increasingly sophisticated mathematical
techniques to the analysis of field-scale flow and trans-
port processes points to the need for accurate yet
expedient methods for quantifying the hydraulic pro-
perties of the medium to be simulated. Less time-
consuming methods for estimating the unsaturated
hydraulic conductivity (K) are especially important, in
part because of the time and labor involved in the direct
field-measurement of this parameter, and in part because
of its spatial variability. Over the years, various methods
have been devised to predict K from the more easily
measured soil water retention curve (Childs and Collis-
George, 1950; Burdine, 1953 ; Marshall, 1958 ; Milling-
ton and Quirk, 1961 ; Mualem, 19764 ; among others).
Although exceptions exist {e.g., Brooks and Corey, 1964 ;
Campbell, 1974), direct application of these predictive
methods generally leads to hydraulic conductivity data
that are in tabular form, a feature that often restricts their
usefulness, for example when simulating flow in one- or
two-dimensional layered systems. As compared to
analytical expressions, tabulated functions also do not
allow for a rapid comparison (Rawls et al., 1983) or the
scaling (Simmons e? al., 1979) of hydraulic properties of
different soils. In this paper we will present several
closed-form predictive equations for the unsaturated
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hydraulic conductivity in terms of parameters that can be
fitted to observed retention data.

To arrive at an accurate predictive analytical (nontabu-
lar) expression for the unsaturated hydraulic conducti-
vity, two conditions must be satisfied. First, an analytical
expression is needed that accurately describes the soil
water retention curve. This first requirement is essential :
any attempt to predict the unsaturated hydraulic
conductivity from retention data fails if the assumed
retention model cannot describe the data over the entire
range of observed values. Consequently, a major part
of this paper deals with the mathematical description of
the scil water retention curve. The accuracy of a predic-
tive equation for K also hinges on the accuracy of the
theory on which that equation ultimately is based. Of the
predictive models presently available, those advanced
by Burdine {(1953) and Mualem {1976a) are probably
most suitable for deriving closed-form analytical con-
ductivity equations. Hence, predictions based on both of
these models will be discussed.

SOIL WATER RETENTION FUNCTIONS

A variety of empirical functions have been proposed
to relate the volumetric water content, ¢, with the soil
water pressure head, & Undoubtedly the most popular
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retention function used to date stems from Brooks and
Corey (1964). Their function is written here in the form

oh =1

o {ar + (8, — 6,) (ah)~*
e wh < 1

N

(D

where 0, is the saturated water content, 6, is the residual
water content, « is a parameter whose inverse (4, = o)
frequently has been referred to as the air entry value
(or bubbling pressure), while 4 is sometimes named the
pore-size distribution index. To simplify notation, 4
(and hence also o) is taken positive for unsaturated
soils. In some studies, 8§, in (1) was assumed to be zero
(c.g, Gardner er al, 1970; Campbell, 1974).

If we introduce a reduced water content, S, (sometimes
called effective saturation) of the form

s, =906 2
¢ 9, — 0, @
then equation (1) can be written as
() * ah =1
5, = (3
¢ { 1 ah < 1 3

Because of its simple form, equation (1) has been used
frequently in unsaturated flow studies (Laliberte er al,
1968 Jeppson, 1974; Brakensiek er al, 1981; among
others). Moreover, the equation produces acceptable
results for relatively coarse-textured, often disturbed
soils with relatively narrow pore-size distributions
(large A-values), especially when a«h > 1, ie., outside
the wet range (Brooks and Corey, 1964 ; 1966).
Unfortunately, equation (1) also has been shown to
give relatively poor fits with observed retention data
near saturation, especially for certain fine-textured,
structured or other field soils exhibiting relatively
broad pore-size distributions. On a logarithmic plot,
cquation (1) generates two straight lines, the point
of connection being exactly at the bubbling pressure (h,).
The resulting discontinuity in the slope of the curve
at 4, ignores the presence of a smooth transition zone
at and near the bubbling pressure; such a smooth
trausition zone is especially characteristic for field-
measured retention curves. Similar continuity limi-
tations also hold for equations proposed by Rogowski
(1971) and Farrel and Larson (1972).

To improve the description of the soil water retention
curve near saturation, various continuously diffe-
rentiable (smooth) S-shaped curves have been pro-
posed. King (1964) suggested the equation

cosh [(A/h)> + e] —
Scosh [(Wh) + ¢] +

(4)

where hy, b (having negative values), ¢ and y are cha-
racteristic for a given soil. Equation (4) is a sigmoidal
curve between the field-saturated water content, 0.,
and a residual water content, §,, the latter quantity
being related to y and & by

cosh (&) —

0 cosh (&) + ¢y~

lim (6) = 0,

8
h— o0

)

r
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King (1965) obtained excellent results with this equation
for several coarse- and fine-textured soils. Gillham et /.
(1976) found that little flexibility was lost when ¢ in
equation (4) was assumed to be zero.

An equally flexible equation for describing retention
data is given by

ah = (1 —8)S,?", (6)
particular forms of which were used by Visser (1968)
and Su and Brooks (1975). The latter authors also
obtained excellent agreement between theoretical curves
based on (6) and measured data for several soils.

A third improved descriptive function for the retention
curve was suggested by Laliberte (1969). His expression
can be put into the form

b
(" Tox h/h)

where the parameters a, b and ¢ were assumed to be
unique functions of the pore-size distribution index 2
in equation (3). Values for a, b and ¢ were obtained by
matching equations (7) and (3) at relatively small values
of §,. Unfortunately, by doing so the wet side of the
curve becomes fixed for a given value of 2, and the
equation loses much of its flexibity. To keep the equa-
tion flexible for different data sets, it secems more useful
to keep at least one and perhaps two parameters (e.g,
a and ¢) in addition to A, floating in (7). Note that only
two of the parameters b, c and 4, in (7) are independent.
A slightly different erfc-model for the retention curve,
but with similar properties as (7), was used by Varallyay
and Mironenko (1979).

Finally, a fourth S-shaped model for the retention
curve that possesses similar features as equations (4),
(6) and (7) was suggested by van Genuchten (1980) :

Se =11 + ()] (8)

where o, n and m also represent empirical parameters.
This equation with m = 1 was used earlier by Ahuja
and Swartzendruber (1972), Endelman et al (1974)
and by Varallyay and Mironenko (1979). To obtain
relatively simple predictive closed-form analytical
expressions for the unsaturated hydraulic conducti-
vity, van Genuchten (1980) assumed unique relations
between the parameters m and n. This restriction is
somewhat analogous to the assumption by Laliberte
(1969) that the constants 4, » and ¢ in(7) are unique func-
tions of 1. As will be shown later, restricting m and »n
sometimes limits the flexibility of (8) in describing
retention data of several soils. Hence, for now we will
assume that m and » are both independent parameters.

= lerfc

S, 3

(7

The discussion above shows that four alternative and
equally flexible models (equations (4), (6), (7) and (3))
are available to describe observed retention data for
a variety of soils. Choice of a particular model therefore
should be governed by the relative simplicity of that
model, as well as by its ability to permit the derivation
of analytical expressions for the hydraulic conducti-
vity when used in conjunction with the predictive
models of Burdine (1953) or Mualem (1976a). Of the
four models, equations (4) and (7) are toc complicated
for deriving closed-form predictive equations for K.
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Retention curves based on (8) for various values of n assumingm=0.1 (a)

and m = 1.0 (b).

Henee, those two models will not be considered further.
As shown by Su and Brooks, equation (6) leads to a
closed-form analytical K -expression when applied
to Burdine’s model Unfortunately, equation (6) is
expressed in terms of 4(0), and no simple inverse func-
tion (/1) exists. We therefore also discard (6) and focus
attention only on eguation (8).

SOME CALCULATED RETENTION CURVES

Calculated retention curves based on equation (8) for
various values of m and » are plotted in figures 1 and 2.
Plots are given using both a semi-logarithmic (figs. 1, 2a)
and regular (fig. 25) scale for the reduced pressure head
(oh); actual A-values are readily obtained by simply
shifting the log-scale by log(«), or by multiplying
the horizontal scale in figure 2b by I/a. The curves
in figure 1 are for two representative values of m,
while in figure 2 the product mn was kept at an arbitrary
but representative value of 0.4, thus resulting in a

Se

REDUCED WATER CONTENT,

10 10° 10° 10°

REDUCED PRESSURE HEAD, ah

Figure 2

unique limiting curve at low saturation values. This
limiting curve follows from (8) by removing the factor 1
from the denominator and is equivalent to the Brooks
and Corey equation (3) with A = mn. The same limiting
curve also appears when we aliow # in (8) to go to infi-
nity and simultaneously decrease m such that the pro-
duct mn remains 0.4. As shown in figure 2a, this leads
to a sharp break in the curve at the « air entry value »
h, = o~ . For finite values of n (n < oc) the curves
remain smooth and more or less sigmoidal-shaped
on a semi-logarithmic plot. However, note that the
curves are markedly nonsigmoidal on the regular
O(h)-plot (fig. 2b) when n is relatively small. Finally,
also note that S, at a reduced pressure head of 1.0
decreases with increasing values of m; this observation
follows directly from (8) which for ah = | simplifies
to §, = 27"

An interesting feature of the retention curve is iis
slope when the curve approaches saturation (4 — 0).
Upon differentiation of equation (8), one may verify
that this slope (C,) is given by

)
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Semi-logarithmic (a) and regular (b) plot of various retention curves
based on equation (8) with mn = 0.4,
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Table 1

Residual sum of squares (SSQ) for nonlinear regression of equation (8) to various data sets taker. from Mualem (1976b). Results are for variable m
and n (S3Qy), for m and n related by m = 1 — 1/n(S8Q,), m and n related by m = 1 — 2/n (SSQ,) and for the Brooks and Corey model (mjn — 0;

8SQ,). Results for Sarpy loam (fig. 6) are also given.

Soil index Mo $SQ, x 10° $SQ, x 10° $SQ, x 10° $5Q, x 10°
1003A Lamberg clay, W* 5 10 20 556
1003B Lamberg clay D* 56 58 68 294
1006 Beit Netofa clay 70 116 156 194
1101 Shluhot silty clay 42 45 44 42
2001 Siit Columbia 1 8 19 69
2004 Slate dust 45 268 249 125
3001 Weld silty clay loam 18 487 425 21
3002 Amarillo silty clay loam 159 449 346 224
3102 Yolo light clay 16 39 19 43
3301A Caribou silt loam, D 3 5 3 29
3301B Caribou silt loam, W 1 1 3 20
3305A Ida silt loam, W 19 117 296 664
3305B Ida silt loam, D 45 51 50 201
3308 Touchet silt loam 14 17 14 367
3403 Pachappa loam 263 427 313 308
4106A Sand, D 14 14 14 140
4106B Sand, W 4 6 8 98
4109 ‘Botany sand 10 147 143 16
4110 Fine sand G.E. No. 13 27 27 28 363
4111 River sand (screened) 181 379 360 320
4113 Oso Flasco fine sand 34 37 41 219
4115 G.E. No. 2 sand 24 34 56 354
4121 Rehovot sand 29 117 46 154
4123 Pouder River sand 64 254 239 64
4125 Adelaide dune sand 4 5 5 54
4130 Hygiene sandstone 1 10 9 4
4132 Fragmented sandstone 32 32 34 374
4136 Fine sand G.E. No. 2 18 18 20 161
4137 Sand fraction 43 359 349 43
4142 Sand fraction 72 103 99 191
5002 Glass beads 56 149 143 155
5003A Aggregated glass beads, D 29 165 150 223
50038 Aggregated glass beads, W 120 337 286 330

— Sarpy Loam 60 99 199 539

*W = main wetting branch; D = main drying branch.

ds 0 n>1
CSE},I_I.%W: —oamn n=1 9
— n <1

which shows that the retention curve approaches
saturation with a zero slope only when n > 1. When
n < 1(dashed curves in figs. 1 and 2) the slope becomes
— oo at saturation, which suggests that the soil water
diffusivity, defined by D = K(d#/d8), should go to
zero when h approaches zero. This feature is highly
unlikely for most or all soils.

Figures 2a, b also demonstrate the effects on the curves
when various restrictions are placed on permissible
values of m and » (with a given value for the product mn,
in this case 0.4). Again, when n — oo, the limiting curve
of Brooks and Corey (1964) with a well-defined air
entry value appears. When m = 1 — 1/n as used by
van Genuchten (1980) for the Mualem-based conduc-
tivity predictions, and keeping the product mm at
0.4, the wet end of the retention curve becomes fixed
at n = 1.4 (fig. 2). Similarly, when m = 1 — 2/n for
the Burdine-based conductivity equation of van Genuch-
ten (1980), the curve is fixed at n = 2.4. Therefore,
any of these three assumptions will fix the curve for
a given value of mn. Of course, the same is also true
when # is taken to be unity (Endelman ef al, 1974).

We emphasize here that equation (8) contains five
independent parameters : 0,, 8, o, m and n. As will be
discussed in detail later, we consider the residual and
saturated water contents to be empirical parameters ;
they are defined only in association with the adopted
retention model, and hence are to be fitted to observed
data using that retention model. Of the three remaining
parameters, o approximately equals the inverse of the
air entry value for small m/n values, while for large
m/n this parameter roughly equals the inverse of the
pressure head at the inflection point (figs. 1, 2). The
product mn determines the slope of the curve at large
values of the pressure head (a4 > 1), and hence may
be viewed as a parameter mostly affected by soil texture.
Soil structural effects usually show up most clearly
near saturation. For a given value of mn, the shape of
the retention curve near saturation becomes fixed by
specifying either m or » (fig. 2)

To verify the ability of equation (8) in matching experi-
mental data, a nonlinear optimization method analo-
gous to that described by van Genuchten (1978) was
used to analyze numerous published and unpublished
data sets. In one particular exercise, 102 retention
curves documented by Mualem (19765) were analyzed.
Taking the residual sum of squares (SSQ) of the fitted
versus observed water contents as a simple means
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of comparing the relative accuracy of various retention 5 == r T :
models, table 1 shows computed SSQ’s for 33 typical
data sets taken from Mualem’s catalogue. SSQ’s are
given for equation (18) with variable m and » (S8Q, in
table 1), for m =1 — I/n (88Q,), for m =1 — 2/n
(88Q;), and for n — oo (85Q,), the latter case resulting
in the model of Brooks and Corey (1964). For a descrip-
tion of the soils listed in table 1 and for appropriate
references, we refer to the papers by Mualem (19764, b).

As expected, having both m and » as variable coeffi-
cients in (8) leads to the best fit (table 1). Of the three
cases with restricted m and/or » values, SSQ, for
m = 1 — 1/n had the lowest values (or was tied with
the lowest value) 44 times, SSQ, was the lowest 35 times,
while SSQ, bad 30 times the lowest value. Clearly, 5 - 55 ' 500 EE—
neither of the three restricted cases produces the better

fit for all data sets, although the relation m = 1 — 1/n PRESSURE HEAD, h (cm)

seems to perform better than the other two restricted
cases. We note here that many or most of the data
sets listed by Mualem (1976b) pertain to laboratory
experiments involving disturbed, screened soils with
rather narrow pore-size distributions. Brooks and
Corey’s model (see SSQ, in table 1) is expected to
perform better for such soils than for undisturbed field
soils which usually exhibit much broader pore-size
distributions. We also tested equation (8) on 200 field-
measured retention curves for Yolo loam, obtained at
a site near Davis, California. Of the three restricted m, n
cases, SSQ, form = 1 — 1/n was found to be the lowest
(or tied with the lowest value) about 70 9 of the time,
SSQ, for m = 1 — 2/n was lowest 359 of the time,

T

WELD SILTY CLAY LOAM

dF m,n variable} B
n— @

VOLUMETRIC WATER CONTENT, 8

Figure 3
Observed and fitted retention curves for Weld silty clay loam.

6 T T T T T T - v v
TOUCHET SILT LOAM

m,n variable

VOLUMETRIC WATER CONTENT, 8
(6]

m=|-I1/n b
and S8Q, (n — oo) was lowest 13 9/ of the time (average m=1-2/n
SSQ-values for the 200 data sets, as a fraction of 85Q, A i
—o]
dr |
e
O 1 I A s L A I il 5. -
. 0 20 40 60 80 100
Figure 4
Observed and fitted retention curves for Touchet silt loam. PRESSURE HEAD, h (cm)
Table 2

Fitted values for the unknown independent parameters in equations (8) and (1) for the retention curves plotted in figures 3 through 6. The residual sum
of squares (SSQ) of the curve-fittings are also given.

Soil name/Type of curve 0. 0, o n m* A SSQ x 10°

Weld silty clay loam

variable m, n 0.116 0.469 0.0173 61.54 0.0308 — 18

m=1-—1/n 0.159 0.496 0.0136 545 (0.816) — 487

m=1-—2/n 0.155 0.495 0.0143 5.87 (0.659) — 425

n— w 0.116 0.465 0.0172 — — 1.896 21
Touchet silt loam

variable m, 0.081 0.524 0.0313 3.98 0.493 — 14

m=1—1/n 0.102 0.526 0.0278 3.59 0.721) — 17

m=1-—2/n 0.082 0.524 0.0312 3.98 (0.497) — 14

n— o 0.018 0.499 0.0377 — — 1.146 367
G.E. No. 2 sand

variable m, n 0.091 0.369 0.0227 411 4830 — 24

m=1—1/n 0.057 0.367 0.0364 5.05 (0.802) — 34

m=1-—2/n 0.0 0.370 0.0382 4.51 0.557) — 56

n— o 0.0 0.352 0.0462 — — 1.757 354
Sarpy loam

variable m, n 0.051 0.410 0.0127 1.114 0.886 — 60

m=1-—1/n 0.032 0.400 0.0279 1.60 (0.374) 99

m=1-—2/n 0.012 0.393 0.0393 245 (0.185) 199

n— o 0.0 0.380 0.0444 — - 0.387 539

* Values for m within parenthesis were calculated from the fitted n-value.
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Figure 5

Observed and fitted retention curves for G.E. No. 2 sand.

for the variable m, n case, were 1.09, 1.13 and 2.01 for
S5Q,, S8Q; and S8Q,, in that order).

To illustrate typical resuits, observed and fitted reten-
tion data for 4 soils are compared in figures 3-6. Fitted
parameter values for these soils are shown in table 2.
Figure 3 shows the results for Weld silty clay loam
(Jensen and Hanks, 1967; Mualem’s soil index 3001
in table 1). In this example, Brooks and Corey’s equa-
tion matches the retention data equally well as the
variable m, n case, whereas the two curves associated
with S5Q, and SSQ, in table 1 produce extremely
poor results. This situation is reversed with Touchet
silt loam (King, 1965; Mualem’s soil index 3308 in
table 1), resuits of which are shown in figure 4. Here,
Brooks and Corey’s model produces an unacceptable
match, while the two other cases with restricted m, n
values are essentially identical to the case of variable m, .
Figure 5 shows similar results for G.E. No. 2 sand
(King, 1965: Mualem’s soil index 4115 of table 1);
significant differences between the three smooth curves

.5 T T T T T T T
L SARPY LOAM |

—— variable m,n

VOLUMETRIC WATER CONTENT, 8

bt — m=i~-i/n =
s @ |- 2/
'] r I n_°® v..': )
O 1 L i 1 L L
10° o} 10 o 1o*
PRESSURE HEAD, h {(cm)
Figure 6

Observed and fitied retention curves for Sarpy loam,
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are apparent only at the lower water contents. Finally,
figure 6 shows a case with visible differences between
all four curves based on equation (8). Data for this
example (Sarpy loam) were taken from Hanks and
Bowers (1962). As manifested also by the SSQ-values
in table 2, there is in this case a progressively better
match with the data going from S8Q, (n — «0) to S5Q,
(m=1—-2/m), to SSQ, (m=1—1/n), to S5Q,
(variable m, n).

From the results in figures 3-6, from the data in table 1,
and from numerous other calculations not shown
here, we conclude that equation (8) with variable m, »
always produces a near perfect fit of the measured
retention data. Of the three cases with restricted m
and » values, the relation m = 1 — 1/n performs best
for many but not all soils, while the Brooks and Corey
equation generally leads to the worst match (except
again for screened or repacked soils). Clearly, none of
the three restricted cases is able to accurately match
retention data for all soil types; only the variable m, n
case leads to excellent results for most if not all soils.

PREDICTIONS FOR THE UNSATURATED
HYDRAULIC CONDUCTIVITY

In this section we will use the predictive models of
cither Burdine (1953) or Mualem (19764) to derive
various expressions for the unsaturated hydraulic
conductivity K in terms of the parameters that appear
in equation (8). Of the two models, Mualem’s formula-
tion will be considered first.

Mualem’s model

The predictive model of Mualem (19764) can be written
in the form

ST

K, =./S, | =]

\/_[ OB

where K, is the relative hydraulic conductivity, K/K_

(with K representing the hydraulic conductivity at
saturation), and where

f(s) = f e

Solving (8) for 4(S,) and substitution into (11) gives

Se Xl/m 1/n
Sy = _—— | dx.
165, f [l_xl,m} .

The substitution x = y™ further reduces (12) to

Siim
= m J
0

mi(p, q) B(p, q) (13)

where I(p, q) is the Incomplete Beta function (e.g,
see Zelen and Severo, 1965), B(p, ¢) is the Complete
Beta function,

(10)

(an

(12)

f(S,) SR O S ) ' 37

{ =5 (14)
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and

p=m+ 1/n g=1-1/n. (15)

Because f(1) = mB(p, ¢), equation (10) becomes simply
K(5) = /5.1 1{p. > (16)

which is the general solution for variable m and 7.

Evaluation of the Incomplete Beta function in equa-
tion (16} is rather cumbersome. For most values of S,
m and n, this function can be approximated accurately
with continued fractions using equations (26.5.8) of
Zelen and Severo (1965)

- e[
9= Tr [ﬁ

where

d :—(p+m)(i7+q+m)£
L (p+2m(p+2m+ 1)

_ m(q — m)
P +2m—D(p +2m)

.o 1y

2m

To increase the rate of convergence, the following
transformation for S, > max [2/(2 + m), 0.2] was car-
ried out before applying equation (17) :

pg=1—-1_4[ap. (19)

The above numerical approximation produced excellent
results. Generally, only five terms of (17) were needed
to obtain an accuracy of at least four significant digits;
a few more terms are recommended for m > 2. For
very small values of { = S}™ we could simplify equa-
tion (16) considerably by using the following approxi-
mation for f(S,)

— mn Sl+1/mn
mn +1 ¢

1S (20)
This equation follows from (12) by neglecting the term
xt™ in the denominator of equation (12) and sub-
sequently integrating that equation. Substituting (20)
mto (11} and using f(1) = mB(p, q) leads then to

nZ SeS/2+2/mn

K, = .
T [mm + 1) B(p, 9]

As shown earlier (van Genuchten, 1980), simpler
solutions for equations (10) and (11) can be derived
when the permissible values for m and n are restricted
such that k = m — 1 + 1/n becomes an integer. The
simplest case arises when k = 0, and hence when
m =1 — 1/n. The relative hydraulic conductivity in
that case becomes :

21

K, =/S[1—(1=SY™"? (m=1—1/n; 0<m<1)
(22)

The predictive equations for K, above were obtained
with equation (8). For completeness, we also give here
the K -expression based on retention model (6) which
was used earlier by Su and Brooks (1975) in connection
with Burding’s model. Substitution (6) into (11), inte-
grating, and combining the result with (10) for Mua-
lem’s model leads to

621

K, =St +1L1 -0 @<l). (23
Burdine’s model

Results analogous to those for Mualem’s model can be
derived also for Burdine’s theory (Burdine, 1953).
Burdine’s model can be written in the form

2 9(5,)
Kr(Se) - Se g(l) (24)
where
S e ]i
g(8,) = J; hT(x) dx . (25)

Substituting the inverse 4(S,) of equation (8) into (25)

yields
Ser yim 2m
g(S,) = L [W:I dx. (26)
The substitution x = y™ reduces (26} to
L
65 = m | e = )y
0
= mifr, s) B(r, 5) @7
where { is defined as before (eq. (14)), and where
r=m+ 2/n s=1—2/n. (28)
Combining (27) and (24) yields
K, =821 5). (29)

Equation (29) is evaluated in exactly the same fashion
as before for the Mualem-based expressions. In parti-
cular, K (S,) for small values of { reduces to the simple
form

mn § 3+ 2/mn

K8 = gz 5

(30)
As before, a similar predictive equation can be obtained
also when retention model (6) is used. The result in
this case is (see also Su and Brooks, 1975)

K,=S2I,(1+2b1—2a). (31)

SOME CALCULATED HYDRAULIC CONDUCTI-
VITY CURVES

Figure 7 shows calculated curves of the relative hydraulic
conductivity (K,) as a function of both the reduced
pressure head («4) and the reduced water content (S,).
The curves, obtained with equation (16) for Mualem’s
model, are for the same retention curves shown in
figure 2, i.e., with the product mn kept at 0.4. Note that,
like the retention curves, the K (a#)-curves in figure 7a
remain smooth except for the limiting case whenn — co.
The two limiting curves for # — oo in figure 74 and 75
are given by (van Genuchten, 1980) :

K.(h) = (ah)y 2732 = (o) 3 (32a)
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and

‘Kr(Se) — Se5/2+2/mn = Se7,5 (325)
respectively ; they are obtained by combining equations
(3) (with 1 = mn), (10) and (11).

Figures 7a, b show that the hydraulic conductivity
curve decreases in value when n approaches unity.
This is because the Complete Beta function B(p, g)
goes to infinity when n — 1. Hence, Mualem’s model
in connection with equation (8) cannot be used when
n < 1. Assuming variable m and n, only 8 of the
102 retention curves listed in Mualem’s catalogue pro-
duced n-values that were less than 1. Similarly, of the
200 retention curves for Yolo loam, less than 10 %
had n-values of less than 1.0 (most of those cases
showed n-values between 0.9 and 1.0). As we noted
earlier (eq. (9)), the slope of the retention function at
saturation goes to — oo when n < 1, a physically
unrealistic situation. Hence, it is likely that the inap-
plicability of Mualern’s model for # < 1 can be traced
back to an unreasonably shaped retention function
near saturation.

As in figure 7 for Mualem’s model, figure 8 shows cal-
culated curves for K (oh) and K (S,) based on equa-
tion (29) for Burdine’s model. The two limiting curves
for n — oo {with mn again fixed at 0.4) in this case
are given by {(Brooks and Corey, 1964)

K(h) = (ah) 273 = (ah)™>2  (33a)

and

K(S,) = §3t3m = g8 (33b)
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Note that for relatively large n-values, the predicted
curves in figure 8 are very similar to the Mualem-
based curves in figure 7. However, considerable diffe-
rences between the two figures are evident when »n is
relatively small. In particular, note that the Burdine-
based curves approach zero when n — 2. This shows
that Burdine’s theory can be applied to far fewer soils
than Mualem’s model (and notably not to soils that
exhibit relatively broad pore-size distributions cha-
racterized by small n-values).

The discussion above pertains only to equation (8)
when both m and » are considered to be independent
parameters. When fixing m and » by forcing the relation
m=1— 1/n for the Mualem-based expressions or
m =1 — 2/n for the Burdine-based equations, the
fitted retention parameters always lead to well-defined
K. -curves. For example, when we keep the product mn
at 0.4 as before (fig. 2), the predicted curves for Mualem’s
model withm = 1 — 1/nare markedn = 1.4infigure7,
while the predicted curves for Burdine’s model with
m=1—2/n are marked n = 2.4 in figure 8 Like
their counterparts in figure 2, these predicted curves
have a limited flexibility since the shape of the curve
near saturation is forced to have a unique relation
with the shape (slope) of the curve in the dry range
when of > 1. In other words, the position and slope
of the K, -curve near saturation is fixed for a given slope
at the dry end of the curve (or vice versa).

To further illustrate the effects of restricting the relation
between m and n in equation (8), figures 9-12 show
predicted conductivity curves for the retention curves
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shown in figures 3-6. Results are plotted either as a
function of the volumetric water content (figs. 9, 10,
12b) or the pressure head (figs. 11, 12q). In all cases,
calculations were based on Mualem’s model. Except
for Sarpy loam (fig. 12), application of Burdine’s
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Predicted relative hydraulic conductivity curves for Touchet silt loam
( Mualew’s model ).

model lead to curves that qualitatively exhibited similar
shapes as the Mualem-based curves. Because n was
less than 2, no Burdine-based K -curve for Sarpy
loam could be calculated for the variable m, 7 case.
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Differences between the calculated curves in figures 9-12
parallel those found for the fitted retention curves
for the same soils (figs. 3-6). For example, the predicted
curve for variable m, n for Weld silty clay loam (fig. 9)
and the limiting case when n — oo were found to be
nearly identical. For Touchet silt loam (figs. 4 and 10)
and G.E. No. 2 sand (figs. 5 and 11), the calculated
K,-curves for m = 1 — 1/n and the variable m, n case
are not quite as close as the fitted retention curves.
Note that for these last two soils the limiting curve
n — oo leads to much higher K -values than the two
other cases.

For completeness, we have included in figures 9 and 11
also the experimental conductivity data as listed by
Mualem (19764). In both figures, the variable m, n case
appears to lead to the best match with the experimental
curves. However, we caution the reader from putting
too much significance on these two examples only.
Clearly, numerous other K{#) or K(h) data sets need
to be analyzed before general conclusions about the
accuracy of the different predictive equations can be
made.

Figure 11 shows the calculated curves for Sarpy loam,
a soil that exhibited visible differences between all
four fitted retention curves, especially near saturation
(fig. 6). Although those differences may appear to
be relatively minor, they do lead to significant diffe-
rences in the predicted curves (figs. 124, b). Main reason
for the sensitivity of the predicted curve to small changes
in the slope and location of the fitted retention curve
near saturation is the rather small n-value obtained for
Sarpy loam (table 2). For example, n equals 1.114 for
the variable m, # case which, as we already showed
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Predicted curves for the relative hydraulic conductivity versus pressure
head (a) and volumetric water content (b) for Sarpy loam ( Mualem’s
model).

in figure 7, leads to a relatively sharp drop in K, just
away from saturation. Because n < 2 (variable m, n),
no predicted curve based on Burdine’s model could
be obtained for Sarpy loam. The results of figure 12
are important; they show that a small change in the
slope of the fitted retention curve near saturation
can greatly alter the location of the predicted K -curve
over the entire range of conductivity values. Using a
fine sandy soil, Stephens and Rehfeldt (1984) similarly



PREDICTING UNSATURATED SOIL HYDRAULIC PROPERTIES

demonstrated a marked sensitivity of the predicted
conductivity curve to small changes in the location
and slope of the retention curve at or near saturation.
For Sarpy loam this sensitivity is further demonstrated
in figure 13a where, for the same retention curves as
in figure 6, the predicted curves for the soil water
diffusivity (D) are compared with the experimental
data of Hanks and Bowers (1962). In general terms,
D is defined as

dh

b K{—‘ _ K, K, §71 - mn(y g timyt =

do | amn(6,—0,) "¢

(34)

where K, is given by one of the predicted K -expressions.
Specific equations for D applicable to the restricted m, n
cases are given elsewhere (van Genuchten, 1980).
Equation (34) requires a value for the saturated hydrau-
lic conductivity, K, which for Sarpy loam was taken
to be 0.0015cms™ ! (Hanks and Ashcroft, 1980).
Figure 13a shows that the variable m, n case severely
underpredicts the curve, while the two restricted cases
n—co and m =1 — 1/n describe the data equally
well, the latter case (m = 1 — 1/n) having a somewhat
more realistic shape near saturation (that is, D —»
as the curve approaches saturation).

The curves in figure 13a were obtained by assuming
that K is known, thus forcing the theoretical and experi-
mental curves to be matched at saturation (even though
the theoretical diffusivity functions go to infinity when
the soil approaches saturation). Unfortunately, the
value of K, is frequently ill-defined or difficult to
measure (see discussion below); in that case it is more
appropriate to match the K(0) or D(0) curve at some
other point. In figure 135, the measured and theoretical
curves were matched at the point (§ = 0.33; D =
0.0792 cm? s~ 1). The three calculated curves now match
the measured data well, except near saturation where
the limiting curve n — oo severely underpredicts the
observed values. Note that this limiting curve remains
finite at saturation while the other two calculated curves
become infinite.

Of the soil hydraulic functions discussed in this paper,
those for Sarpy loam probably are the most characte-
ristic for a soil exhibiting a relatively broad pore-size
distribution. Assuming that several large pores are
present, some of those may desaturate quickly with
the application of a small (negative) pressure. The
water content near saturation thus drops quickly,
which in turn could result in an apparent nonzero slope
of the curve at saturation. If we ignore any matrix or
fluid compressibilities and thus limit the discussion
to non-swelling soils, one may reason, however, that
always a finite and nonzero pressure is needed before a
pore of finite dimensions can lose its water : desaturation
can only start when the « air entry value » of that pore is
reached. Consequently, the slope of the retention curve
at saturation must be zero, and hence n > 1. Irrespec-
tive of what happens microscopically in such large pores
upon desaturation, it is clear that from a macroscopic
point of view the situation remains ill-defined, especially
in view of our measurement techniques. Application of a

10° T — ] e
OOC,ZI
SARPY LOAM _
/dl’
oL (Mualem) S !
(]
o
= o2t J
>
[72]
o
V.
[V
o 107 1
o
Ll
|_
<
=
fomds -
=
o
[42]
[opd = .
-6 i .’:u 1 1 1 i . { 1
0 0 A 2 3 4
VOLUMETRIC WATER CONTENT, 8
loo 1 1 T T T T 1l
SARPY LOAM *
(Mualem)
I07'F | .
matched
data point
102+ J .
n—0 7
Ke=.0091 ] 7/

m,n variable -
Ks=.036

10™*

SOIL WATER DIFFUSIVITY, D
S

10°F [, .
/| b
[
Io-G IL :'l i i i 1
0] J .2 3 4
VOLUMETRIC WATER CONTENT, @
Figure 13

Observed and predicted curves for the soil water diffusivity of Sarpy
loam. The predicted curves were obtained (a) by using the measured
K -value in equation (34), and (b) by directly matching the curves to
an experimental point as shown.

certain retention model, such as equation (8) or any
other model, further obscures the description of water
retention near saturation. Using that retenfion model, at
best we can extrapolate the observed data towards
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saturation. This procedure leaves the conceptual defi-
nition of 2 « saturated water content » in the context of a
retention model as a mere academical exercise, not only
because of entrapped or dissolved air, but also because
of the presence of a few large pores or cracks. This is
exactly the reason why in this study we consider 0,
like 8, and the other constants in equation (8), to be an
empirical parameter that should be fitted to the data.

The above definition problem of « saturation » is even
more acute when we attempt to quantify the parameter
K, in a predictive hydraulic conductivity model. For a
disturbed, repacked soil with a narrow pore-size distri-
bution and having large s#-values, K, should be well-
defined, even when extrapolated from slightly unsatu-
rated conditions (e.g, see the example of Weld silty clay
loam). However, for undisturbed and especially aggre-
gated soils, direct field measurement of K, may prove to
be extremely difficult : K could easily change several
orders of magnitude with the application of only a few
cm pressure. [gnoring for now the theoretical basis of
the plots in figures 7 and 8, the rapid decrease of the
hydrauiic conductivity near saturation when n approa-
ches 1 (fig. 7a) or 2 (fig. 8a) is intuitively quite realistic :
K at saturation is determined by only a few large pores
or cracks with little direct relation to the overall pore-
size distribution that determines the shape of the
K,-curve at intermediate saturation values. Hence,
inasmuch as ¢, in practice is a poorly defined physical
parameter that should be considered in the context of a
chosen retention model, one can argue even more
convineingly that K, should be an extrapolated para-
meter that raust be fitted to a particular hydraulic
conductivity model, even if that model were to be a
purely empirical equation. Moreover, a fitted K_using
unsaturated conductivity data should better reflect the
unsaturated flow properties of the medium, a considera-
tion that may prove to be especially important when the
hydraulic functions subsequently are used to predict
unsaturated flow.

The above comments about the definition of 0, and K
are most opportune for soils with relatively small
n-values, Sarpy loam being only a typical example.
Clearly, the «saturated hydraulic conductivity » of
such soils is not the best point for matching predicted
and measured curves {(e.g, see Jackson er al, 1965;
Green and Corey, 1971; among others). Instead, it
seems more accurate to match the theoretical and experi-
mental curves at some other point of the curve, perhaps
still somewhere in the wet range but definitely not at
saturation(Roulier et al., 1972 ; Carvallo et al., 1976). The
latter procedure was followed for Sarpy loam, and
perhaps should have been applied alse to G.E. No. 2
sand (fig. 10}

SUMMARY AND CONCLUSIONS
The successful prediction of the unsaturated hydraulic

conductivity from soil water retention data using analy-
tical (nontabular) functions requires a reliable descrip-
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tive model of the retention curve as well as an accurate
model for K, on which the prediction ultimately is based.
This paper shows that equation (8) has great flexibility
in describing retention data from various soils, has a
simple inverse function, and permiis the derivation of
closed-form analytical equations for K(f) when combin-
ed with the predictive theories of either Burdine (1953)
or Mualem (1976a). The 5-parameter retention model
graphically displays a smooth, continucusly differen-
tiable S-shaped curve between the saturated and residual
water contents. Application of the model to numerous
data sets, both for disturbed, screened soils as well as for
undisturbed field soils, consistently lead to an excellent
match with the observed data.

Of the two hydraulic conductivity models, Mualem’s
model was found to be applicable to a wider variety of
soils than Burdine’s model. For example, Mualem’s
model can be combined with equation (8), provided the
parameter # in that equation exceeds I, whereas Bur-
dine’s model requires this coefficient to be larger than 2.
When n < 1, the slope of the retention curve near
saturation becomes — o0, a situation that is physically
unrealistic; for n > 1, the slope at saturation is always
zero. Analysis of hundreds of data sets revealed n-values
of less than 1 for only about 5 9/ of the cases. We tend to
conclude that such low n-values are due to poorly
defined or incomplete data sets, rather than a result of
theoretical limitations inherent in Mualem’s model.
Application of equation (8) with variable m and # to the
models of Burdine or Mualem leads to predictive equa-
tions for K, that contain the Incomplete Beta function.
Although accurate approximations are available (eq.
(17)), routine application of this function to unsaturated
flow problems may prove to be too cumbersome. Except
for soils characterized by very small (e.g, # < 1.25) or
very large n-values (e.g., n > 6), the unsaturated hydrau-
lic properties are approximated reasonably well with
the more restrictive case where m = 1 — 1/u; the
predictive K -expression based on Mualem’s model can
then be simplified considerably (eq. (22)). Data often are
available over only a small part of the retention curve
{(usually the wet range), especially when the curve is
based on direct field measurements. Estimation of all
5 independent parameters in equation (8) from such data
sets may lead to inversion problems manifested by
coefficient values with extremely large standard errors.
For such data sets, we also recommend that the restricted
case m = 1 — I/n be used.

Finally, this study concentrated on the analysis of soil
water retention data. Although additional studies of the
retention curve are needed, notably studies that deal
with the mathematical description of the curve near
saturation, we feel that equally or more research should
focus on improved predictive models for the relative
hydraulic conductivity. For example, while we con-
cluded that Mualem’s model has more potential than
Burdine’s model in predicting the unsaturated hydraulic
conductivity of widely different soils, 2 more detail-
ed evaluation of Mualem’s formulation remains
1eCcessary.
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